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Abstmad. Hidden symmetries, those not found by the classical Lie group method for point 
symmetries, are reponed for nonlinear first-order ordinary diKerential equations  ODE^) 
which arise frequently in physical problems. These are for the special class of the eight 
non-Abelian, two-parameter subgroups of the eight-parameter projective group. The first- 
order ODES can be transformed by non-local transformations to new separable first.order 
ODES which then can be reduced to quadratures. The first-order ODES include Riccati 
equations and equations which in particular cases are ofthe form of Abel's equation. The 
procedure demonstrates the feasibility of integrating nonlinear ODES that do not show any 
apparent Lie group point symmetry. Applications to the Vlasov characteristic equation and 
the reaction-diffusion equation are given. 

1. Introduction 

The application of Lie group symmetries to nonlinear differential and differential- 
integral equations has produced a large number of exact solutions or simplifications 
of the equations [I-241. This approach has been widely used in the solution of 
differential equations which describe physical and engineering as well as biological 
and chemical problems. It has been especially helpful for nonlinear differential 
equations as so many of the methods for linear differential equations fail for nonlinear 
differential equations. Nonlinear diffusion problems are especially amenable to this 
approach [3,7,9] but applications to other nonlinear problems, to general relativity 
equations [ I  11, fluid equations [5,8,12,13], shocks 1141, kinetic equations for plasmas 
[ 15-22], transport equations in semiconductors [23], are known. 

Not all exact solutions of nonlinear differential equations are found by what has 
come to be called the classical Lie group method for point symmetries, however. First, 
the equations may have contact or generalized symmetries. These are not really what 
is meant here by hidden symmetries although in the case of the higher-order ordinary 
differential equations (ODES), symmetries may be missed that are found if the higher- 
order ODES are replaced by a set of first-order ODES [8,22]. In this analysis hidden 
symmetries are those that are not found by the usual methods for determining the Lie 
point, contact or generalized symmetries of a particular differential equation [24]. The 
hidden symmetries may be the non-classical symmetries for partial differential equations 
where a PDE, which is equivalent to the new symmetry, is adjoined to the original PDE 

such that the resultant set is now invariant under the new symmetry [25-271. Potential 
symmetries for P D E ~  have also yielded some interesting solutions [9]. In this work we 
restrict our considerations to D D E ~ ,  which are mostly nonlinear, and consider one sort 
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of hidden symmetry. This symmetry arises when an ODE is converted to a higher-order 
ODE which is then invariant under a Lie point group that was not an invariance of the 
original ODE and is called a type I hidden symmetry. 

The symmetry is hidden since application of the usual classical method does not 
find it. That method applies the extended group generator to the differential equation(s) 
as an invariance condition and requires that the differential equation(s) hold simul- 
taneously. The invariance condition, which is an identity, leads to a set of linear partial 
differential equations, called determining equations, for the coordinate functions of 
the group generator. The coordinate transformation, which simplifies the differential 
equation such that the order can be reduced, is calculated from the characteristic 
equations for the coordinate functions. Except for the coordinate functions of the 
group generator for nonlinear first-order ODES the determining equations can usually 
be integrated. Integration of the characteristic equations is less certain but for many 
common groups can be performed. The determination of the Lie point symmetries of 
a nonlinear first-order ODE is difficult since the determining equation is a single intricate 
PDE. Most of the nonlinear first-order ODES that can be identified as invariant under 
a group were integrated by a guess or were found to be of the general form of a 
differential equation invariant under a particular Lie point group [I], The compilation 
of a table of general forms of nonlinear differential equations invariant under a hidden 
symmetry is opposite in approach to the direct construction of the Lie point group for 
a particular nonlinear ODE by the classical method. Calculating the general form of 
the differential equation from the Lie group symmetries is the inverse problem. This 
indirect approach is used here for the calculation of the first-order OD& invariant 
under hidden symmetries. It was used by Cohen [l]  in the early years of this century 
for Lie point groups and more recently by Fushchich and Nikitin [24]. 

The hidden symmetries of first-order ODES are chosen for two reasons. First, the 
determination of the Lie point group under which first-order  ODE^ are invariant is the 
most intractable problem of determining symmetries of ODES by the direct classical 
method so that some procedure to enlarge the class of solutions is welcome. Second, 
one of us has been looking for more solutions of the motion of a one-dimensional 
charged particle in a time- and space-dependent electric field. This problem arose in 
the solution of the one-dimensional, nonlinear Vlasov-Maxwell equations for a col- 
lisionless plasma [15-181. Many engineering and physical problems are described by 
sets of nonlinear, partial differential equations but these are frequently reduced to 
nonlinear ODES of first order. Phase plane trajectories have been analysed to determine 
the behaviour of the solutions [7], but here we look for exact analytical solutions. The 
simplest case is considered where the higher-order O O E ~  are of second order and are 
invariant under a non-Abelian two-parameter group. These second-order ODES can be 
reduced to first-order ODES and then to quadratures if the differential invariants 
associated with the normal subgroup are chosen. The transformation to canonical 
coordinates, those coordinates that make the transformed second-order ODE invariant 
under translations in the independent variable, can also be done but we do not use 
that approach here. However, if the differential invariants of the non-normal subgroup 
are chosen, the reduction usually stops in first order [SI. This occurs because a point 
group symmetry originally present in the second-order ODE has been lost. These 
reduced, first-order ODE$ are the ODE$ with the hidden symmetries. For completeness 
we note that the reduced, first-order ODE may have a group invariance that the original 
second-order ODE did not possess. The invariance of the first-order ODE under this 
new group is a hidden symmetry of the second-order ODE and is not discussed here. 

B Abraham-Shrauner and A Guo 
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The eight-parameter projective group [S-101 has been chosen first since the 
'maximum number of symmetries under which a second-order ODE is invariant is eight. 
The non-Abelian two-parameter subgroups are selected from the projective group and 
are found by looking at the commutators of the group generators, partial differential 
operators, for each of the eight one-parameter subgroups. Eight cases are found by 
computing the commutators but they may be read from a commutator table [9]. A 

' general form of the first-order ODE is given for each of the eight cases together with 
the appropriate variable transformation to the associated second-order ODE. The 
variable transformation to reduce the first-order ODE to quadrature is also indicated. 
The general procedure for finding all these expressions is shown for one case. Two 
plasma equations, Vlasov characteristic and reaction-diffusion, are analysed. 

2. General procedure for finding bidden symmetries 

The group generator is U = t(z, u)J /Jz+  q(z,  u)J/Ju for thegeneral second-order ODE, 

F(z ,  U, U,, U Z Z )  =o (1) 

where 5 and q are the coordinate functions and the notation U, = du/dz, U,, = d2u/dz2 
is used. 

For the projective group the group generators are 

U, 7 J, U, = J. U, = rJ, U, = ua. U,=zJ.  
\ \  (2) 

U, = ua, u,=zuas+u2au U, = z2a, + Z U J ,  

where the notation a, =a/&, etc, is introduced for conciseness [8-lo]. 
The Lie algebra associated with a two-parameter symmetry group is defined by the 

commutator of the group generators. For the non-Abelian two-parameter subgroups 
of the projective group the commutators of the group generators are of the form 

?-- 
where k is f 1. The group associated with the group generator U, is the normal subgroup. 

The general f o k  of the second-order  ODE^ is next given. For the uncomplicated 
groups treated here the general form of the ODE in second order is first found for each 
of the eight separatp one-parameter groups by calculating the invariants. Next the 
overlap of the general'forms of the second-order ODES is found. By overlap we mean 
that the resultant form of the second-order differential equation is valid for both group 

' invariances. Another way to find\ the general form is by applying the Bluman-Kumei 
procedure [9]. In that approach the general form of the second-order ODE for the one 
group is restricted by imposing conditions due to the second group. 

The invariants are determined by'integrating the characteristic equations of the 
extended group generator. The characteristic equations are 

\ 

I 

' ,! ' 

(4) 
du, - du,, - - d u  -- dz 

\ C ( 7  3.1 - I 7  . . I  - , l z , & , c , G * )  I .  - I . . I . ,  .. > '  
,\.,"I ,,,A, - I  VIZ=\-, U, - I ,  U Z Z I I  

The invariants determined from integrating these equations are the first differential 
invariant, Y(z ,  U, U*), and the invariant or path-curve, X ( z ,  U), as well as the second- 
order differential invariant. The choice of new coordinates x and y which reduce the 
second-order ODE to a first-order ODE is not unique. We choose y = Y(z, U, u.) and 

( 
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x = X ( z ,  U) but we could choose x as a function of X and y as the product of a 
function of X and a function of Y, for example. The first-order differential equation 
is of the form 

E Abraham-Shrauner and A Guo 

and can be found from the second-order differential equation for both subgroups of 
the two-parameter subgroup. The variable transformation is then determined between 
the variables for the two first-order ODES as described in the next section. The solution 
for the first-order ODE in the non-normal subgroup variables is given by the variable 
transformation and the solution of the separable ODE in the normal subgroup variables. 

3. Hidden symmetries for U, and U, 

The procedure is illustrated for one case. We start with the characteristic equations 
for U3 and U, with commutator [ Us,  U,] = - U,, These are 

d r  du du, du,, _=_=-=- 
z 0 --U, -2u,, 

for U, and 
dz du du, du,, _=-=--__ - 
2’ zu U-zu ,  -3zu,, (7) 

for Us.  These integrate to give the invariants U, zu,, z2y, for U, and u / z ,  U -zuz,  z’u,, 
for us. 

The general form of the differential equations is found as a function of the invariants. 
For these two group generators the general forms of the second-order ODES are: 

F(u,zu,,  z2u,,)=0 

for U, and 

F(U/Z, U - Z U ~ ,  z ~ u , , ) = o  (8) 

// (9) 

for Us. The overlap of these two ODES gives 

F(u - zuZ, z’uu,,) = 0 
/ 

where for the uncomplicated invariants the combinations that work for both general 
ODES in equation (8) are easy to discover. For the non-normal subgroup with group , 

generator U, the first-order differential invariant, y,,and the path-curve, x, are y = zu, 
and x = U. Another choice of variables in terms of the invariants could give a differential 
equation with more arbitrary fundions. For example x = e( U )  and y = f ( u ) r u ,  would 
introduce more arbitrary functions. Equivalently, one can introduce a change of 
variables in (10) by setting x equal to an arbitrary function of a new variable and 
changing y appropriately. For the compilation of an extensive set of look-up tables 
one might choose various combinations of y and x in terms of the invariants but that 
is not done here. Substituting these into (9) where we restrict OUT attention to the 
particular form with the first-order derivative to the first power, we find 

f 

/ 
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where g is an arbitrary function of its argument. For special forms of g, equation (IO) 
becomes Abel's equation. The other choice of differential invariant and path curve for 
the normal subgroup with group generator U, is 9 = U - zu, and f = U/ I. The differential 
equation (9) becomes upon substitution 

which can be integrated by separation of variables. The variable change to convert 
(IO) to (1 1) is found by solving for z as a non-local function of x and y. The expression 
9 = U - zu, is solved for z where u/z is replaced by f. The results for x and y are 

f 2 
Y = J df,i + 

- 3  Ida/?+ C 
X =  

The inverse coordinate transformation is 

p = x - y  and 

as can be seen by comparing the arguments of the function g in (10) and (11) and by 
setting x/z = f and y = dx/d In z which gives upon integration z as a non-local function 
of x and y .  The solutions for x and y are then found by substituting the solution for 
f and changing the integration variable to 9 in (12) from (11). The solutions for x 
and y as parametric functions in 9 are 

for 

For many functions g ( y )  the integrals can be performed and the expression for x as 
a function of p inverted to give 9 as a function of x. 

! 
4. Results for the hidden symmetries 

The results for the hidden symmetries of the first-order ODES are summarized in this 
section. The higher-order ODE is a second-order ODE invariant under a non-Abelian 
two-parameter subgroup of the projective group. Given are the general forms of 
the first-order ODE with hidden symmetries, restricted to the first-order derivative 
in the first power. The variable transformation to the higher-order ODE is noted as are 
the variable transformations between the two first-order ODES. The solutions for y ( x )  
in cases I.,b and I I , ,  and parametric solutions for cases I I I , b  and I V , ,  are given. 

The results are indicated in the tables. In table 1 for each of the eight cases noted 
in column 1 the two group generators for the two-parameter group are tabulated in 
column 2. The group generator is U, (U,) corresponding to the normal (non-normal) 
subgroup. The constant k in the commutator given by (3) is 1 for the cases and 
&,, -1 for the cases I I I , b  and lV+ The general form of the second-order ODE 
invariant under the two-parameter group of Lie point transformations is presented in 
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Table 1. The group generaton U. and U, for the normal and non-normal subgroups 
respectively are listed in column 2 and the general forms ofthe second-orderooe invariant 
under the 2-parameter subgroup of the projective group are given in column 3. The eight 
2-parameter subgroups are indicated in column 1 for this and all tables. 

~~~ ~- 
Case Group generaton Second-order O D E ~  

U. =a,, U, = ra, F (  U, 2) = 0 

column 3. The ‘solved’ form of the second-order ODE can be calculated from the 
general form where the second-order differential invariant containing uzz is set equal 
to a general function, g, of the other invariant. The ‘solved’ form here has the 
highest-order derivative to the first power. The statements about the reduction of the 
order of an ODE which is invariant under a Lie point group, are usually made about 
ODES with the highest-order ODE appearing in the first power as a function of the 
lower-order derivatives and the two variables. Transcendental expressions such as were 
found for a carrier transport equation in semiconductors for the first-order derivative 
and the function [23] are not considered here and are usually excluded. 

In table 2 the variable transformation for the non-normal subgroup is presented. 
The first-order differential invariants and invariants found from the extended group 
generators for U,, the non-normal group generator, are tabulated in column 2. This 
is the variable transformation that reduces the order of the ‘solved’ form of the 
second-order ODE to the first-order ODE. First-order ODES, which have the hidden 
symmetries, are tabulated in column 3. These are the equations, excluding case I, with 
no apparent invariance under one-parameter Lie point groups. The corresponding 
quantities for the normal subgroup are tabulated in table 3. The coordinate transforma- 
tions from (x, y )  of the non-normal subgroup variables to (f, j )  ofthe normal subgroup 
variables and the inverse coordinate transformations are not tabulated here but are 
given in a technical report. 

In table 3 the first-order ODES are identical for the cases with the same Roman 
numeral and very similar otherwise. This similarity is not accidental; the eight cases 
can he classified into two types of the four possible normal forms of group generators 
of two-parameter groups [lo]. In the normal forms one group generator is for transla- 
tional invariance. The two types of normal forms found here are for non-Abelian 
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Table 2. The variable transformation or invariants for the non-normal subgroup are given 
in column 2. The first-order ODES far the non-normal subgroup variables are listed in 
column 3. 

Case Non-normal variables First-order OD& 

1. y==u,, x = u  

1, y=-,  x = z  

11. y=ru, ,  x = u  

11, y=-,  x = z  

Ill. y = m , ,  x = u  

Il lb y = - , x = r  

IV. y = m , ,  * = u  

IV, y=-, x = z  

% 
U 

U 

U, 

" 

U, 

U 

Table 3. The variable transformation or invariants for the normal subgroup are given in 
column 2. The first-order ODES for the normal subgroup variables are listed in column 3. 

Case Normal variables First-order ODES 
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Table 4. The solutions given in wlvmn 2 for y ( x )  for cases I and I1 and the parametric 
solutions x(p) and y ( i )  are &hen for cases 111 and IV. 

Case Solutions 

groups where they are further distinguished by zero or non-zero values for S. The S 
is the determinant of the coordinate functions of the group generators. In table 3 S = O  
for cases I and I1 and S # 0 for cases I11 and IV. 

The solutions of the first-order ODES in the normal subgroup variables are tabulated 
in table 4. For cases I.,b and IIa,b the relation for y(x) is direct since 5 = x. For cases 
I I I , b  and I V , *  a parametric relation occurs. The h-functions in table 5 are: 

\ - - I  

The group generators for the first-order ODES with the hidden symmetries in table 
2 can be calculated but are not presented here. The group generators are non-local. 
The properties of non-local group generators are discussed by Olver [SI. 

5. Vlasov characteristic equation and reaction4iffusion equation 

We consider two physical examples. The first example arises in the solution of the 
Masov equation for a collisionless plasma. The Lie symmetries of the Masov characteris- 
tic equation were investigated earlier [la] but the solutions were limited. The equation 
of motion of a one-dimensional charged particle in a space- and time-dependent electric 
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field is the Vlasov characteristic equation 

d2x 
d t  m, 
7 = & E ( x ,  t )  

where x is the position, t is the time, q, is the charge, m, is the mass of the particle 
and E ( &  t )  is the electric field and SI units are used. The Lie symmetries were calculated 
in (16). A very general case (the coordinate function of the x-derivative of the group 
generator does not depend linearly on x since these result in very complicated cases) 
leads to a reduced equation 

where the general expressions for V(x, U, t )  and f(x, t )  are given elsewhere [16] and 
U:(f) is an arbitrary function of 3 at this point. The first-order, nonlinearooe, equation 
(17), was found to have solutions for (i) N=O which gave an energy in these 
transformed variables and (ii) N # 0 and Ub(3) quadratic in x. 

To find more solutions the variables have been changed to alter (17) close to the 
form of the ODES in table 2. The procedure in this example is to match our first-order 
ODE to one in table 2. Define 

w = V + N 3  f = f  (18) 

and interchange dependent and independent variables. Then 

m, d f  

Next we choose a simple form of the potential 

Four values of p were found to give solutions; more values may. For p = -1 the 
potential is quadratic in f as was already known and this is case IV. in the tables. 
For p = O  a linear ODE results which is case I.. For p = f ,  equation (19) can be put 
into the Riccati form but it does not fit the Riccati equations in table 2. For p = 1 we 
find the Bemoulli equation which is case Ib in table 2. The invariant for the p = 1 case 
is 

where the limit L is a constant as is 9, and the other cases have similar invariants. 
The second example comes from the reaction-diffusion equation [28-301 which 

has wide applications in plasmas, biology and chemistry. Consider a particular form 
of the reaction-diffusion equation 

where n(x, t )  is the number density, x is the position, t is the time, D is the diffusion 
coefficient, and q, p and a are constants. Although similarity solutions are frequently 
postulated for (22), we assume that a travelling wave occurs with n ( x - u t )  for U a 
constant. This dependence is allowed because of the invariance of the reaction-diffusion 
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equation under translations in x and t. Equation (22) becomes a second-order ODE 

B Abraham-Shrauner and A Guo 

d n  

for (= x - ut. 
Equation (23) has solutions for a number of parameters. If q = 1 - p ,  this equation 

is invariant under the stretching (dilatations) group as well as translations in c. In 
addition for q = 1 - p  this equation can be reduced to a second-order linear ODE by a 
non-local transformation, S = I  d[/nq. This is a generalization of the diffusion equation 
with q = -2 that was first discussed for a non-local transformation by Storm [31] and 
later by many others [32-341. We consider q = -1, p = 2 here. For those values (23) is 
invariant under the group represented by the group generators 

a a na 
U =- U, = [---. 

a[ a[  an 
Since [U,, U,] = U,, then the invariants associated with U, are the non-normal sub- 
group variables. If we reduce (23) by those invariants, 

We find 

dy 2 D ~ y  + Dy2 - ux2y - ax4 -= 
dx W ~ + Y )  

where the translation group symmetry has been lost. Equation (26) has a hidden 
symmetry which can be recovered by increasing the order of the ODE back to second 
order to find (23). 

The order of (23) can be increased by applying the Riccati transformation, 

where the choice of this group is suggested by the form of the invariance of (23) under 
the stretching group and the form of the non-local transformation. We find if D = vT 
that 

~ u ~ u , u , , ,  - ~ u ~ u : , +  aru:  = o (28) 
where (28) is invariant under the groups represented by the group generators, U,, U, 
and U,. If we use the invariants of U,, which are non-local subgroup variables, to 
reduce the order of equation (28), we find a second-order ODE which has a hidden 
symmetry. If we use the invariants of U,, to reduce (28) to a second-order ODE, we 
find the linear ODE found by a non-local transformation of (23). In that case (28) has 
a type I1 hidden symmetry in which new symmetries appear when the order of the 
ODE is reduced. Type I1 symmetries have been analysed in unpublished work. 

6. Discussion 

Hidden symmetries of first-order ODES have been analysed for the eight non-Abelian 
subgroups of the projective group. In general the  ODE^ are nonlinear. This is the first 
systematic study of type I hidden symmetries for nonlinear ODES although Olver [8] 



Hidden symmetries of nonlinear ODE* 5607 

considered case IV. in a somewhat different format. The non-local coordinate transfor- 
mations between the two sets of variables for the first-order  ODE^ and the parametric 
form of the solutions have been stressed here. We have not reported on the non-local 
group generator which was mentioned by Olver. Two physical examples have been 
presented. These are hidden symmetries of the equation of a charged particle in a 
time- and space-dependent electric field and of a reaction-diffusion equation. 

The hidden symmetries of nonlinear PDES, which are usually called potential and 
non-classical symmetries, have received more attention recently. However, the hidden 
symmetries of nonlinear ODES are very important. In the two examples from physical 
problems the original equation was a PDE which reduced to an ODE. Also this paper 
attempts to correct the misimpression that the only symmetries of the  ODE^ are those 
found by the classical Lie group method for point symmetries or its extension to contact 
and generalized symmetries. With this viewpoint researchers may conclude that no 
analytical solutions exist when in fact they do. In addition, the forms of the variable 
transformations found here may suggest other non-local variable transformations for 
ODES, which are not apparently invariant under a Lie point group. 

Two aspects of the results should be noted. First, a class of first-order ODES, not 
apparently invariant under a Lie point group, can be reduced to quadratures. The 
extension of the approach employed here, the construction of the general form of 
higher-order ODES with more complicated hidden symmetries, seems quite feasible. 
Second, for a particular first-order ODE the tables offer an easy check of the ODE even 
though the tables are still limited since only the subgroups of the projective group 
have been presented. The variable transformations and general form of the solutions 
in terms of integrals are tabulated. 

In table 2, we note that the first-order ODES for cases I.,b and IIa,b are similar. A 
linear ODE and a Riccati equation, which is also a Bernoulli equation, are the resulting 
equations for cases I. and Ib respectively. Both can be reduced to quadratures by 
well-tried methods. However, the coordinate transformation from the original first- 
order ODE variables (x, y) to the new first-order ODE variables (X, j )  is non-local. The 
non-local character of the variable transformation is fundamental and is clearly the 
attribute which gives rise to the hidden symmetries. For cases I a , b  and the solution 
y ( x )  is shown explicitly as integrals (they may be multiple) containing the arbitrary 
function g(x). Besides the tables for Lie point symmetries of first-order ODES the tables 
of differential equations of Kamke [35] have extensive lists of first-order ODES for 
which solutions have been found. The ODES in table 2 for cases I. and Ib are there, 
of course, and the ODE for case IIb is there as well but the ODE for case 11. is not 
found. The exclusion of the ODE for case 11. is a bit odd since all the first-order ODES 

labelled with subscript b can be transformed to the comparable ODE labelled with 
subscript a by changing y to l /y  to within a minus sign. 

are similar. For the 
cases I I I , b  and IVa,b the solution can be expressed in terms of parametric functions 
x(j) and y ( j ) .  For some functions g ( j )  the relation for x(j) can be inverted and y 
expressed in terms of x. Parametric functions in themselves are quite useful especially 
with computer programs such as Mathematica. None of the ODES for cases and 
IVa,b appear in their general form in the Kamke tables. These are probably absent 
since the general form of the solution is parametric. The approach here has the 
advantage over the use of Kamke’s tables in that many variations of the same equation 
are replaced by a single differential equation. In addition the approach is more 
systematic and demonstrates the structure of the symmetries of those equations. 

Also in table 2 we note that the ODES for cases I I I , b  and 
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